8 research outputs found

    Size-dependent transformation from triangular to rectangular fluxon lattice in Bi-2212 mesa structures

    Full text link
    We present a systematic study of the field and size dependencies of the static fluxon lattice configuration in Bi-2212 intrinsic Josephson junctions and investigate conditions needed for the formation of a rectangular fluxon lattice required for a high power flux-flow oscillator. We fabricate junctions of different sizes from Bi2Sr2CaCu2O8+x and Bi1.75Pb0.25Sr2CaCu2O8+x single crystals using the mesa technique and study the Fraunhofer-like modulation of the critical current with magnetic field. The modulation can be divided into three regions depending on the formed fluxon lattice. At low field, no periodic modulation and no ordered fluxon lattice is found. At intermediate fields, modulation with half-flux quantum periodicity due to a triangular lattice is seen. At high fields, the rectangular lattice gives integer flux quantum periodicity. We present these fields in dependence on the sample size and conclude that the transitions between the regions depend only on lambdaJ(Jc) and occur at about 0.4 and 1.3 fluxons per lambdaJ, respectively. These numbers are universal for the measured samples and are consistent with performed numerical simulations.Comment: Conference paper LT2

    Persistent electrical doping of Bi2Sr2CaCu2O8+x mesa structures

    Full text link
    Application of a significantly large bias voltage to small Bi2Sr2CaCu2O8+x mesa structures leads to persistent doping of the mesas. Here we employ this effect for analysis of the doping dependence of the electronic spectra of Bi-2212 single crystals by means of intrinsic tunneling spectroscopy. We are able to controllably and reversibly change the doping state of the same single crystal from underdoped to overdoped state, without changing its chemical composition. It is observed that such physical doping is affecting superconductivity in Bi-2212 similar to chemical doping by oxygen impurities: with overdoping the critical temperature and the superconducting gap decrease, with underdoping the c-axis critical current rapidly decreases due to progressively more incoherent interlayer tunneling and the pseudogap rapidly increases, indicative for the presence of the critical doping point. We distinguish two main mechanisms of persistent electric doping: (i) even in voltage contribution, attributed to a charge transfer effect, and (ii) odd in voltage contribution, attributed to reordering of oxygen impurities

    Photoconductivity effects in mixed-phase BSCCO whiskers

    Get PDF
    We report on combined photoconductivity and annealing experiments in whisker-like crystals of the Bi-Sr-Ca-Cu-O (BSCCO) high-Tc superconductor. Both single-phase Bi2Sr2CaCu2O8+\delta (Bi-2212) samples and crystals of the mixed phases Bi2Sr2Ca2Cu3O10+x (Bi-2223)/Bi-2212 have been subjected to annealing treatments at 90{\deg}C in air in a few hours steps, up to a maximum total annealing time of 47 h. At every step, samples have been characterized by means of electrical resistance vs temperature (R vs T) and resistance vs time at fixed temperature (R vs t) measurements, both in the dark and under illumination with a UV-VIS halogen arc lamp. A careful comparison of the results from the two techniques has shown that, while for single-phase samples no effect is recorded, for mixed-phase samples an enhancement in the conductivity that increases with increasing the annealing time is induced by the light at the nominal temperature T = 100 K, i.e. at an intermediate temperature between the critical temperatures of the two phases. A simple pseudo-1D model based on the Kudinov's scheme [Kudinov et al., Phys. Rev. B 47, 9017-28, (1993)] has been developed to account for the observed effects, which is based on the existence of Bi-2223 filaments embedded in the Bi-2212 matrix and on the presence of electronically active defects at their interfaces. This model reproduces fairly well the photoconductive experimental results and shows that the length of the Bi-2223 filaments decreases and the number of defects increases with increasing the annealing time.Comment: 30 page

    Radiation studies performed on the High Luminosity ATLAS TileCal link Daughterboard

    Full text link
    The new electronics of the ATLAS Tile Calorimeter for the HL-LHC interfaces the on-detector and off-detector electronics by means of a Daughterboard. The Daughterboard is positioned on-detector featuring commercial SFPs+, CERN GBTx ASICs, ProASIC FPGAs and Kintex Ultrascale FPGAs. The design minimizes single points of failure and mitigates radiation damage by means of a double redundant scheme, Triple Mode Redundancy, Xilinx Soft Error Mitigation IP, CRC/FEC for link data transfer, and SEL protection circuitry. We present an updated summary of the TID, NIEL and SEE qualification tests, and performance studies of the Daughterboard revision 6 design.Comment: 5 pages, 5 figure

    High-frequency phenomena in small Bi2Sr2CaCu2O8+x intrinsic Josephson junctions

    No full text
    In this thesis, the tunneling between individual atomic layers in structures of Bi2Sr2CaCu2O8+x based high-temperature superconductors are experimentally studied employing the intrinsic Josephson effect. A special attention is paid to the fabrication of small mesa structures using micro and nanofabrication techniques. In the first part of the thesis, the periodic Fraunhofer-like modulation of the critical current of the junctions as a function of in-plane magnetic field is investigated. A transition from a modulation with a half flux quantum to a flux quantum periodicity is demonstrated with increasing field and decreasing junction length. It is interpreted in terms of the transformation of the static fluxon lattice of stacked, strongly coupled intrinsic Josephson junctions and compared with theoretical predictions. A fluxon phase diagram is constructed.Numerical simulations have been carried out to complement the experimental data. In the second part of the thesis, different resonant phenomena are studied in the dynamic flux-flow state at high magnetic fields, including Eck-resonances and Fiske steps. Different resonant modes and their velocities, including superluminal modes, are identified. In the third part, different experiments attempting to detect radiation from small mesa structures using different setups based on hot-electron bolometer mixers and calorimeters are described. No distinct radiation with emission powers higher than about 500pW could be detected. Furthermore, the interaction with external GHz-radiation is studied. Resonances attributed to an induced flux-flow are observed, and the reflectivity of the sample can be tuned by switching mesas between the superconducting and quasiparticle state. In the last part, the resistive switching of mesas at high bias is studied. It is attributed to a persistent electrical doping of the crystal. Superconducting properties such as the critical current and temperature and the tunneling spectra are analyzed at different doping states of the same sample. The dynamics of the doping is studied, and attributed to two mechanisms; a charge-transfer effect and oxygen reorderin

    A Revised Version of the ATLAS Tile Calorimeter Link Daughterboard for the HL-LHC

    No full text
    The ATLAS Tile Calorimeter (TileCal) readout link and control daughterboard (DB) is the central on-detector hub of the new TileCal electronics upgrade for the high-luminosity large hadron collider (HL-LHC). The DB, which has undergone gradual redesigns during development, provides the connection between the on- and off-detector electronics via bidirectional fiber-optic links. Two CERN-developed, radiation hard GBTx application specified integrated circuits (ASICs) receive LHC timing signals and configuration commands through 4.8-Gb/s downlinks, which are in turn propagated to the front end through Xilinx Kintex Ultrascale field-programmable gate arrays (FPGAs). The Kintex FPGAs also continuously perform real-time readout and transmission of digitized photomultiplier (PMT) samples, detector control system (DCS) signals, and monitoring data through redundant pairs of 9.6-Gb/s uplinks. The DB design aims at minimizing single points of failure and improving the performance and reliability of the board. Apart from the GBTx devices, the DB design relies on radiation-qualified commercial off-the-shelf (COTS) components. Mitigation of radiation-induced single-event upsets (SEUs) in the FPGAs is performed by a combination of the Xilinx soft error mitigation (SEM) controller and triple-mode redundancy (TMR) schemes in the FPGA firmware. Data integrity is protected through forward error correction (FEC) in the downlinks and cyclic redundancy check (CRC) error verification in the redundant uplinks. This article presents the latest revision of the DB (version 6), a redesign that addresses single-event latch-up (SEL) behavior observed in the Kintex Ultrascale+ FPGAs used in the previous revision, and features a more robust power circuitry combined with an improved current monitoring scheme, enhanced performance of the analog-to-digital converter (ADC) read-out, and improved timing performance
    corecore